

Integrated top-down and bottom-up processing of non-native tone systems

Liang Zhao and Eleanor Chodroff Department of Language and Linguistic Science University of York September 29, 2021

Outline

1. Introduction

- 2. Production experiment
 - Task overview: Mandarin dialect production experiment (remote audio collection)
 - Goal: Establish the acoustic-phonetic tonal realisations in Beijing Mandarin (~Standard Mandarin) and Chengdu Mandarin
- 3. Perception experiment
 - Task overview: Surprisal sentence perception (accuracy and reaction time)
 - Goal: Determine the relative weighting of top-down and bottom-up information in the perception of lexical tone
- 4. Discussion

Speech perception revisited

speech signal _____ intended utterance

Path from acoustic signal to units of perception: *many-to-many*

• "The fact that speech soundwaves are not a one-to-one/linear encoding of a speaker's utterance plan" (Tatham & Morton, 2006)

The main problem: to decode the intended utterance from the speech signal

Speech perception revisited

• "The fact that speech soundwaves are not a one-to-one/linear encoding of a speaker's utterance plan" (Tatham & Morton, 2006)

The main problem: to decode the intended utterance from the speech signal

Speech perception: bottom-up and/or top-down

Many early models assumed bottom-up processing as a first attempt

e.g. The Cohort Model (Marslen-Wilson 1978, 1987), Direct Perception (Gibson 1954) & Direct Realism (Fowler 1986)

Further development of the theory did take top-down influence into consideration

- Advocate: TRACE (McClelland & Elman 1986), Acoustic landmarks & distinctive features (Stevens 2002, 2008)
- Opponent: Shortlist (Norris 1994), Merge (Norris, Cutler and McQueen 2000) •

But overall top-down influence remains unclear/brief in many theories and their applications

Speech perception: segmental (and suprasegmental)

Models of speech perception have been segment-oriented

What about suprasegmental processing?

Speech perception: lexical tone processing

Debate on the relative role of lexical tone and segmental information for lexical access

Segmental information >> lexical tone in sub-lexical processing

(Cutler & Chen 1999, Ye & Connine 2010, Li et al. 2013)

Lexical tone >> or ≈ segmental information with top-down feedback ٠

(Schirmer et al. 2005, Liu & Samuel, 2007, Malins & Joanisse, 2010)

Extension of TRACE: Reverse Accessing Model (RAM, Gao et al. 2019)

Report on "distinctive advantage of word and atonal syllable judgments over phoneme and lexical tone • judgments"

Speech perception: non-native lexical tone processing

Lexical tone processing

- Context may be crucial
- Previous studies were most often with a native lexical tone system

Would **non-native lexical tone** processing be any different? And how?

What happens when the tone system is non-native, but the segmental system is familiar?

First, let's get to know about the tone system of Mandarin dialects

Comparable segmental inventories, but **distinct** tone inventories

Speech perception: non-native Mandarin dialects

Mutual intelligibility (Tang & van Heuven, 2007, 2008, 2009)

- Relatively high mutual intelligibility in semantic decision task with carrier sentences
- Intelligibility dropped with words presented in isolation

We hypothesize an essential role of **top-down information** in perception of non-native speech BUT!

- Fully top-down?
- Hybrid processing with both top-down and bottom-up processing?

Outline

1. Introduction

2. Production experiment

- Task overview: Mandarin dialect production experiment
- Goal: Establish the acoustic-phonetic tonal realisations in Beijing Mandarin (~Standard Mandarin) and Chengdu Mandarin
- 3. Perception experiment
 - Task overview: Surprisal sentence perception (accuracy and reaction time)
 - Goal: Determine the relative weighting of top-down and bottom-up information in the perception of lexical tone
- 4. Discussion

Production experiment

Participants

- 8 native Beijing speakers (represent Standard Mandarin)
- 7 native Chengdu speakers

Stimuli (reading material) & Tasks

- **80 monosyllabic words** (20 forms * four tones)
- **48 sentences** (potential perceptual stimuli)
- Production in Standard Mandarin and their regional dialect

Production experiment

Acoustic analysis

- Alignment
 - Transcripts generated from *Gorilla* and processed as text files for each speaker
 - Forced alignment using Montreal Forced Aligner
 - Manual adjustment of vowel boundaries
- Tone categories: f0 contours
 - 10 equally spaced f0 values across all vocalic intervals
 - Converted to semitones

Production experiment

Results

- Highly disparate realisations of lexical tone between Standard Mandarin and Chengdu Mandarin
- Contour similarity observed for some tone categories

	Chengdu	Beijing
Tone 1	25 (55*)	55
Tone 2	21	35
Tone 3	53	214
Tone 4	213	51

Outline

- 1. Introduction
- 2. Production experiment
 - Task overview: Mandarin dialect production experiment (remote audio collection)
 - Goal: Establish the acoustic-phonetic tonal realisations in Beijing Mandarin (~Standard Mandarin) and Chengdu Mandarin

3. Perception experiment

- Task overview: Surprisal sentence perception (accuracy and reaction time)
- Goal: Determine the relative weighting of top-down and bottom-up information in the perception of lexical tone
- 4. Discussion

Perception experiment

Participants

• 21 native Mandarin, non-Chengdu speakers

Task & Procedure

• Semantic plausibility judgment task of a spoken sentence

"*Does this sentence make sense*?" and clicked "yes" or "no" on the screen after hearing the whole sentence

- Accuracy and reaction time were measured as independent variables
 - If an answer matched the expected plausibility, then it was considered correct

Perception experiment

Experimental manipulation (48 trials = 12 sentences * 4 conditions)

- Dialect conditions: Standard Mandarin vs. Chengdu Mandarin
- Surprisal conditions: low surprisal vs. high surprisal

Experimental manipulation (48 trials = 12 items * 4 conditions)

 $\,\circ\,$ An example item in the four conditions:

	Low-surprisal sentence	High-surprisal sentence
Standard Mandarin	有 一只 鹰 在 天上 <u>飞</u> You3 yi4 zhi1 ying1 zai4 tian1 shang4 <u>fei1</u> There is an eagle in the sky <u>flying</u> "There is an eagle flying in the sky"	有 一只 鹰 在 天上 <u>肥*</u> You3 yi4 zhi1 ying1 zai4 tian1 shang4 <u>fei2*</u> There is an eagle in the sky <u>gaining weight*</u> "There is an eagle gaining weight in the sky"
Chengdu Mandarin	有 一只 鹰 在 天上 <u>飞</u> You yi zhi ying zai tian shang <u>fei</u> There is an eagle in the sky <u>flying</u> "There is an eagle flying in the sky"	有 一只 鹰 在 天上 <u>肥*</u> You yi zhi ying zai tian shang <u>fei*</u> There is an eagle in the sky <u>gaining weight*</u> "There is an eagle gaining weight in the sky"

Perception experiment

More on stimuli

All 48 sentences were

- produced by a native, male speaker of Standard Mandarin and Chengdu Mandarin
- randomly presented with no repetitions or indication of dialect

Listeners were made aware of the two possible dialects in the task instructions

Perception experiment

Analysis

Assessing **accuracy and reaction time** for the effects of semantic plausibility (**surprisal**) and dialect familiarity (**dialect**)

Expected results in the semantic plausibility task

	Low-surprisal sentence	High-surprisal sentence
Native speech	Accuracy	Accuracy 🕇
	"yes"	"no"
Non-native	Accuracy 🦊	Accuracy 🦊
speech	"yes"	*"yes"

Accuracy

Significant main effect of *surprisal, dialect* and an *interaction between surprisal and dialect* (each *p* < 0.01)

- *Surprisal*: low-surprisal >> high-surprisal condition
- *Dialect*: Standard Mandarin >> Chengdu Mandarin
- *Interaction*: significantly less accurate in the highsurprisal Chengdu condition relative to average

Accuracy

Native speech (Standard Mandarin)

- Overall accuracy at 92%
 (Saying implausible when they should say implausible)
- Listeners do understand the task
- Use both top-down (sentential context) and bottom-up information (word-tone knowledge)

Accuracy

Non-native speech (Chengdu Mandarin)

- Bias to respond "semantically plausible"/ "yes" (86%) for all sentences
 - Suggests relatively high intelligibility
- Unable to use tone information in high-surprisal sentences
 - Major bottom-up *failure* in identifying tone mismatch in high-surprisal condition
- Top-down influence overriding bottom-up tone acoustics

Reaction time

Expected results in the semantic plausibility task

	Low-surprisal sentence	High-surprisal sentence
Native speech	baseline	slowdown 🖊
Non-native speech	==	==

Reaction time

Significant main effect of *surprisal*

- Significant slowdown in high-surprisal condition for **both** native and non-native speech
 - For native speech: expected
 - For non-native speech: unexpected!
- Both bottom-up and top-down processing are present
 - Processing tone information in nonnative speech!

25

Findings

- Highly disparate tone systems between Chengdu and Standard Mandarin
- High intelligibility of Chengdu dialect by native speakers of Standard Mandarin
- Accuracy results suggest dominance of higher-level top-down information in perception of non-native Mandarin dialect (Chengdu)
- Reaction time results suggest sensitivity and potential learning of the non-native tone system indicating the presence of bottom-up processing

Discussion

Bottom-up and top-down processing are both actively involved in perception of native and non-native tone systems

 Contrary to RAM (Gao et al. 2019) which proposed that tone information is "processed if necessary", we argue that tone information is always processed

Discussion

Bottom-up and top-down processing are both actively involved in native and non-native speech perception

Native speech:

- Accuracy results suggest that listeners have strong representations of tone and segments (bottom-up)
- Reaction time results suggest they are sensitive to the sentence surprisal (top-down)

Discussion

Bottom-up and top-down processing are both actively involved in native and non-native conditions

Non-native speech:

- Accuracy results suggest listeners use context alone (top-down)
- Differences in reaction time suggests that they are constructing *impoverished tone representations* during online processing (bottom-up)
 - We don't know if they are building long-lasting representations (learning) or temporary representations
 - We do know that top-down information typically overrides the output of the tone level (low confidence)

Follow-up experiment with Chengdu Mandarin exposure

- Accuracy improves after two minutes of uninterrupted exposure
- Listeners may indeed be learning tone representations or gaining confidence of them

Future directions

Current study could be extended:

- To experiment on a broad range of Mandarin dialects to test the hypotheses
- To investigate whether perception varies across dialects and explain potential patterns using production data
- To examine the relative temporal relations between top-down and bottom-up processing (Shuai & Gong, 2014)

Special thanks to Dr. Shayne Sloggett! (shayne.sloggett@york.ac.uk)

Contact

Liang Zhao: <u>Iz1136@york.ac.uk</u> Eleanor Chodroff: <u>eleanor.chodroff@york.ac.uk</u>

